If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+27x-288=0
a = 10; b = 27; c = -288;
Δ = b2-4ac
Δ = 272-4·10·(-288)
Δ = 12249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12249}=\sqrt{9*1361}=\sqrt{9}*\sqrt{1361}=3\sqrt{1361}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{1361}}{2*10}=\frac{-27-3\sqrt{1361}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{1361}}{2*10}=\frac{-27+3\sqrt{1361}}{20} $
| -5(r+8)=-67 | | 5x/3-3=17 | | 8(4-7x)+8(x+2)=0 | | 7y=2y-55 | | 8x-(4x+5)=5x-25 | | -209=6+5(-8v-3) | | 5c–2(c–5)=17 | | 57=3.8x | | f(5)=2(3.14)(5^3) | | 2(6k+4)+5(1+5k)=50 | | 2(2-3x)=2(5x+1) | | 72=4(x-5) | | x÷0.6=8.9 | | (4x+2)÷(6x+3)=0 | | (x+9)=(3x-33) | | 84=2.1x | | 29x=23x=42 | | 0x+1=3x+4 | | -65=-8(5x-5)+5(7+x) | | 24=5+k | | 3b-4=-5b+20 | | 4/7*y=12 | | X+(x+2)+(x+2)=186 | | 5x+(2x-7)=23 | | X2=4x+21 | | 3n+2=1/ | | 5(7x-1)=49 | | 1/4x-1/5=3/4x+2 | | 3×+7=8x-1 | | 6(1+4x)+4=-110 | | 2(5x+8)=6x20 | | -8(k+5)+8(-6+3k)=-8 |